
Lingua Project
(12) Metaprograms’ development in Lingua (1)

(Sec. 9.4)

Andrzej Jacek Blikle

April 26th, 2025

The book "Denotational Engineering" may be downloaded from:

https://moznainaczej.com.pl/what-has-been-done/the-book

A discipline of validating programming

Apr 26th, 2025 A.Blikle - Denotational Engineering; part 12 (???) 2

Formally, validating programming may be regarded as proving theorems of a

theory of denotations of Lingua ― we shall call it D-theory.

pre x,k is integer and-k k > 0: precondition (specification)

 x := 0;

 asr x = 0 rsa; assertion (specification)

 while x+1 ≤ k do x := x+1 od

post x = k postcondition (specification)

An example of a specified program ― a theorem in D-theory

Validating programming consist in deriving:

• correct metaprograms – theorems of D-theory

• from other correct metaprograms – theorems of D-theory

• by means of program-derivation rules – theorems of D-theory

Languages of formalized theories
(illustrated by an example of theoretical arithmetic)

Apr 26th, 2025 A.Blikle - Denotational Engineering; part 12 (???) 3

E.g. in a formalized arithmetic:

Integer ― the universe

x + y ― a free term

2 + 3 ― a ground term

x < y ― a free formula

3 < 2 ― a ground formula

Two syntactic categories:

terms – evaluate to the elements of a universe

formulas – evaluate to truth values tt and ff

valid formula ― a formula that is satisfied for all valuations

Examples of valid formulas:

x < x + 1

x < y implies x +1 < y + 1

2 < 3+1

Semantics of the language of arith.:

Validation = Variable ⟼ Integer

TerDen = Validation → Integer

ForDen = Validation → {tt, ff}

2-valued classical logic; classical connectives: and, or, not, implies

Lingua-V
A language of a (many sorted) formalized theory of denotations (D-theory)

Apr 26th, 2025 A.Blikle - Denotational Engineering; part 12 (???) 4

Formulas (examples)

 con1  con2 ― free formula

 con1  con2 implies con1  con2 ― free formula (and theorem)
2 𝑥 > 2  x > 4 ― ground formula (and theorem)

many-sorted universe ― all domains of denotations in Lingua model

Terms (examples)

 ide := vex ― free term

 vex1 < vex2 ― free term

 x := x+1 ― ground term

 x < x+1 ― ground term

ide, vex, vex1, vex2

run over the corresponding

denotations

Schemes ― free terms and formulas

Schemes of instructions:

ide := vex

if vex then ins1 else ins2 fi

A scheme of a metaprogram:

pre con1

 if vex then ins1 else ins2 fi

post vex1 < vex2

Proving theorems in formalized theories

Apr 26th, 2025 A.Blikle - Denotational Engineering; part 12 (???) 5

╞ for – for is a theorem

Substitution rule

╞ a(x1,…,xn)

╞ a(ter1,…,tern)

xi – variables

teri – terms

Detachment rule (modus ponens)

╞ for1, ╞ for1 implies for2

╞ for2

fori – formulas

Gödel theorem

Every theorem is

valid.

axioms and

theorems

inference

rules

Two basic inference rules:

An ecosystem of programmers in Lingua-V

Apr 26th, 2025 A.Blikle - Denotational Engineering; part 12 (???) 6

REPOSITORIES OF BASIC

THEOREMS

Repository of general theorems and

axioms:

 x+y = y+x

 x < x+1

 con1  con2 implies con1  con2

Repository of schemes of metaprograms:

 pre (ide is free) and-k (tex is type)

 let ide be tex tel

 post var ide is tex

Repository of concrete metaprograms:

pre (length is free) and-k (real is type)

 let length be real tel

post var length is real

REPOSITORY OF METAPROGRAMS’

CONSTRUCTION RULES

pre prd : spr post poc

poc  poc1

pre prc : spr post poc1

to be read

(pre prd : spr post poc) and

(poc  poc1)

implies

(pre prc : spr post poc1)

All construction rules in the repository

must be proved on the ground of

D-theory.

classical

Our metaprogram-construction discipline
(the rules of using rules)

Apr 26th, 2025 A.Blikle - Denotational Engineering; part 12 (???) 7

Two categories of construction rules

Nuclear rules, e.g.:

pre (ide is free) and-k (tex is type)

 let ide be tex with yex tel

post var ide is tex

pre prd : spr post poc

poc  poc1

pre prc : spr post poc1

Implicative rules, e.g.:

The main metaprograms’ derivation rule; the main rule (MR):

A metaprogram may be included in a repository of metaprograms exclusively if

one of two prerequisites are satisfied:

1. it is created out of a metaprogram in a repository by a replacement of

metavariables by compatible terms (substitution), or

2. it is created out of one or more metaprograms from a repository by means of

a rule from the repository of rules (detachment).

Conclusion (Gödel):

All (derived) metaprograms in both repositories are correct.

A programmer’s view on program development

Apr 26th, 2025 A.Blikle - Denotational Engineering; part 12 (???) 8

Each derived metaprogram is eventually of the following general form:

 pre prc :

 atp-1 ; … ; atp-n ; open procedures ; asi-1 ; … ; asi-k

 post poc

were

atp-i’s ― atomic preambles (declarations or instructions)

asi-i’s ― atomic instructions (may be structured)

Derivation process:

pre prc-1: atp-1 post poc-1

…

pre prc-n : open procedures post poc-n

pre prc-(n+1) : asi-1 post poc-(n+1)

…

pre prc-(n+k+1) : asi-k post poc-(n+k+1)

where the metaimplications must be proved:

prc  prc-1

poc-i  prc-(i+1) for i = 1;k+n

poc-(n+k+1)  poc

In this process programmers build:

1. declarations,

2. instructions,

3. conditions

An example of a metaprogram derivation

Apr 26th, 2025 A.Blikle - Denotational Engineering; part 12 (???) 9

Mataprogram to be derived

 pre x, y is integer and-k x > 1:

 y := x + 1

 post y > 0

Rule to be used:

pre prc : spr post poc

poc  poc-1

pre prc : spr post poc-1

By substitution we get:

pre pre x, y is integer and-k x > 1 : y := x+1 post y > 1 to be found in repository

y > 1  y > 0 to be found in repository

pre pre x, y is integer and-k x > 1 : y := x+1 post y > 0 to be included in repository

About error-sensitivity

Apr 26th, 2025 A.Blikle - Denotational Engineering; part 12 (???) 10

Error-sensitivity of conditions (def):

• error transparent ― if [con].sta = error.sta whenever sta carries an error,

• error negative ― if [con].sta = fv whenever sta carries an error,

• error positive ― if [con].sta = tv whenever sta carries an error,

• error sensitive ― if it is error transparent or error negative

Error-sensitive metaprogram (def)

All conditions:

• preconditions,

• assertions

• postconditions

are error sensitive

Metaprogram-construction rules (1)
(general rules)

Apr 26th, 2025 A.Blikle - Denotational Engineering; part 12 (???) 11

Lemma 9.4.3-1

If

pre prc : spp ; open procedures ; sin post poc

is correct and error-sensitive, then in any execution of the included specprogram

that starts with a state satisfying prc:

1. none of spp, sin, poc generates an error,

2. states satisfying prc do not bind identifiers that are declared in spp,

3. all active assertions in sin are satisfied,

4. the terminal state does not carry an error.

Lemma 9.4.4-3 The replacement in a correct metaprograms of its pre- or post-

condition or a condition in an assertion by a weakly equivalent condition, does

not violate the correctness of the program.

Lemma 9.4.4-4 The replacement in a correct metaprogram of a boolean

expression vex in an instruction by a boolean expression vex1 that is strongly

equivalent (i.e., vex ≡ vex1) does not violate the correctness of the

metaprogram.

Metaprogram-construction rules (2)

Apr 26th, 2025 A.Blikle - Denotational Engineering; part 12 (???) 12

pre prc : spp post (de-con and-k sp-con)

pre (de-con and-k sp-con) : open procedures post (de-con and-k op-con and-k sp-con)

pre (de-con and-k op-con and-k sp-con) : sin post (de-con and-k op-con and-k si-con)

pre prc:

 spp ; open procedures ; sin

post (de-con and-k op-con and-k si-con)

Lemma 9.4.4-5 Rule of final composition

where:

• spp ― specified program preamble,

• de-con ― hereditary condition induced by declarations included in spp,

• sp-con ― condition induced by instructions included in spp,

• op-con ― hereditary condition induced by open procedures,

• sin ― specified instruction,

• si-con ― condition induced by sin.

Metaprogram-construction rules (3)

Apr 26th, 2025 A.Blikle - Denotational Engineering; part 12 (???) 13

pre prc-1: spr-1 post poc-1

pre prc-2: spr-2 post poc-2

poc-1  prc-2

pre prc-1: spr-1; spr-2 post poc-2

pre prc-1: spr-1; asr poc-1 rsa; spr-2 post poc-2

pre prc-1: spr-1; asr prc-2 rsa; spr-2 post poc-2

Lemma 9.4.4-6 Rule of sequential composition

Lemma 9.4.4-7 Rule of strengthening precondition

pre prc: spr post poc

prc-1  prc

pre prc-1: spr; post poc

An analogous rule of weakening postcondition is also sound.

Metaprogram-construction rules (3)

Apr 26th, 2025 A.Blikle - Denotational Engineering; part 12 (???) 14

pre prc-1: spr post poc-1

pre prc-2: spr post poc-2

pre prc-1 and-k prc-2 : spr post poc-1 and-k poc-2

pre prc-1 or-k prc-2 : spr post poc-1 or-k poc-2

Lemma 9.4.4-9 Rule of conjunction and disjunction of conditions

Lemma 9.4.4-10 Rule of propagation of resilient conditions

pre prc: spr post poc

con resilient to spr

pre prc and-k con : spr; post poc and-k con

Metadeclaration-construction rules (1)

Apr 26th, 2025 A.Blikle - Denotational Engineering; part 12 (???) 15

Five categories of atomic declarations

to be considered:

1. declarations of value variables,

2. enrichments of covering relations,

3. declaration of classes,

4. global openings of procedures.

Lemma 9.4.5-1 Rule of a variable declaration

pre (ide is free) and-k (tex is type)

let ide be tex tel

post var ide is tex

Lemma 9.4.5-2 Rule of an enrichment of a covering relation

pre consistent(tex1 , tex2) : an underivable condition

enrich-cov(tex1, tex2)

post tex2 covers tex1

Note:

Declarations of

• type constants,

• class attributes,

• methods

formally belong to the cathegory

of class transformers.

Metadeclaration-construction rules (2)
(class declarations)

Apr 26th, 2025 A.Blikle - Denotational Engineering; part 12 (???) 16

Anchored class transformers

ctd : ClaTraDen = Identifier ⟼ WfState → WfState class transformer denotations

act : AncClaTra = ClaTra in Identifier anchored class transformers

[ctr in ide] : WfState → WfState

[ctr in ide] = [ctr].ide.

a basic scheme

of a class declaration

 class

 ide parent cli with

 ctr-1;

 …

 ctr-k

 ssalc

an alternative scheme

of a class declaration

 class

 ide parent cli with skip-ctr

 ssalc ;
 ctr-1 in ide;

 …
 ctr-k in ide

Metadeclaration-construction rules (2)
(class declarations; cont.)

Apr 26th, 2025 A.Blikle - Denotational Engineering; part 12 (???) 17

pre prc : class ide parent cli with skip-ctr ssalc post pa-poc

pre pa-poc : ctr-1 in ide post (pa-poc and-k cr-poc-1)

pre (pa-poc and-k cr-poc-1) : ctr-2 in ide post (pa-poc and-k cr-poc-1and-k cr-poc-2)

...

pre prc:

 class ide parent cli with ctr-1; … ; ctr-k ssalc

post pa-poc and-k cr-poc-1 and-k cr-poc-2 and-k …

Lemma 9.4.4-3 Rule of class declaration

Metadeclaration-construction rules (2)
(the opening of procedures)

Apr 26th, 2025 A.Blikle - Denotational Engineering; part 12 (???) 18

pre

 pre-proc pr-ide-11 (val fpc-v-11 ref fpc-r-11) body-11 imperative in cl-ide-1 and-k

 pre-proc pr-ide-12 (val fpc-v-12 ref fpc-r-12) body-12 imperative in cl-ide-1 and-k

…

pre-proc pr-ide-21 (val fpc-v-21 ref fpc-r-21) body-21 imperative in cl-ide-2 and-k

pre-proc pr-ide-22 (val fpc-v-22 ref fpc-r-22) body-22 imperative in cl-ide-2 and-k

…

open procedures

post

cl-ide-1.pr-ide-11 opened and-k

cl-ide-1.pr-ide-12 opened and-k

 …

cl-ide-2.pr-ide-21 opened and-k

cl-ide-2.pr-ide-22 opened and-k

 …

Apr 26th, 2025 19A.Blikle - Denotational Engineering; part 12 (???)

Thank you for

your attention

	Sekcja domyślna
	Slajd 1: Lingua Project (12) Metaprograms’ development in Lingua (1) (Sec. 9.4)
	Slajd 2: A discipline of validating programming
	Slajd 3: Languages of formalized theories (illustrated by an example of theoretical arithmetic)
	Slajd 4: Lingua-V A language of a (many sorted) formalized theory of denotations (D-theory)
	Slajd 5: Proving theorems in formalized theories
	Slajd 6: An ecosystem of programmers in Lingua-V
	Slajd 7: Our metaprogram-construction discipline (the rules of using rules)
	Slajd 8: A programmer’s view on program development
	Slajd 9: An example of a metaprogram derivation
	Slajd 10: About error-sensitivity
	Slajd 11: Metaprogram-construction rules (1) (general rules)
	Slajd 12: Metaprogram-construction rules (2)
	Slajd 13: Metaprogram-construction rules (3)
	Slajd 14: Metaprogram-construction rules (3)
	Slajd 15: Metadeclaration-construction rules (1)
	Slajd 16: Metadeclaration-construction rules (2) (class declarations)
	Slajd 17: Metadeclaration-construction rules (2) (class declarations; cont.)
	Slajd 18: Metadeclaration-construction rules (2) (the opening of procedures)
	Slajd 19

